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A STUDY OF HYPERSONIC SMALL-DISTURBANCE THEORY 1 
By MILTON D. VAN DYKE 

SUMMARY 

A systematic st,udy is made of the approximate inviscid 
theory of thin bodies mouing at such high supersonic speeds that 
nonlinearity is an essential .feature of the equations of jlow. 
TheJirst-order small-disturbance equations are derived-for three- 
dimension,al motions inr:olai,ng shock waues, and estimates are 
obtained for the order of error involved in the approximation. 
The hyperso,nic similarity rule _ of Tsien and Hayes, and 
Hayes’ unsteady analogy appear in the course of the deaelop- 
ment. 

It is shown that the hypersonic theory can be interpreted so 
that it applies also in the range of linearized supersonic flow 
theory. Hence, a single small-disturbance theory, a,n.d as- 
sociated similarity rule, apply at all supersonic speeds above 
the transonic zone. 

Several examples are solved according to the small-disturbance 
theory, and compared with the -full solutions when auailable. 
These include-flow past a wedge and cone, and determination of 
the initial gradients at the tip of plane and axially symmetric 
ogiues. For the axially symmetric ogive it is shown that further 
terms can be found only by using Lighthill? technique of render- 
ing solutions uniformly valid, and thus the initial curvature of 
the pressure distribution is calculated. It is concluded that on 
a body of reuolution described by a power series, the pressure 
distribution and shock waue are also given by power series. 

A brief discussion is given. of carious addition.al approxima- 
tions from existing theories. 

INTRODUCTION 

Aerodynamic shapes are ordinarily most efficient when 
they cause the least flow disturbance. For this reason, 
simplified theories based upon the assumption of small dis- 
turbances due to thin bodies have proved to be of practical 
value in analyzing incompressible, subsonic, transonic, and 
supersonic flow~.~ For flows at Mach numbers large com- 
pared with unity, however, the pressure disturbances may 
no longer be small (compared with the static pressure) 
even for thin shapes, so that in this sense it has been said 
that no small-disturbance theory exists (ref. 1). However, 
if viscosity can be neglected, the velocity disturbances 
remain small compared with the speed of flight (though not 
compared with the speed of sound), and even the pressure 
changes are small if compared with the dynamic pressure. 
In this sense, therefore, a small-disturbance theory exists? 

1 Supersedes NACA TN 3173. “A Study of Hypersonic Small-Disturbnnce Theory” by 
Milton 1). Vnn Dyke, 1954. 

2 Throughout, “thin” is used to refer to any body whose streamwise slope Is small, and 
SO applies to slender fuslform objects as well as flat shapes such as airfoils. 

and the assumption of such small disturbances leads to a 
useful simplification of the equations for compressible flow 
at arbitrarily high Mach numbers. 

Viscosity and heat conduction must be neglected in order 
to have a small-disturbance theory. Otherwise, for example, 
the viscous no-slip condition would intcoduce velocity dis- 
turbances equal to the speed of flight. In many cases this 
simplification does not destroy the essential features of the 
flow. In other cases, the inviscid theory may serve as a 
basis for including viscosity and heat conduction. Thus, 
recent studies of the hypersonic boundary layer (refs. 2 and 
3), which indicate that viscous effects become essential at 
extreme Alach numbers (say, greater than 15), replace the 
boundary layer by a fictitious solid surface and then utilize 
inviscid theory of the sort considered here. 

At sufficiently high Mach numbers, inviscid flow past any 
given thin object requires nonlinear equations for its de- 
scription. We take this as the definition of hypersonic flow: 
Supersonic flow past a thin body is termed hypersonic if the 
Mach number is so great that nonlinearity becomes an essen- 
tial feature. Thus, the definition of hypersonic flow stands 
on an equal footing with the generally accepted meaning of 
transonic flow at the other extreme of the supersonic range; 
that is? flow at a Mach number so close to unity tha,t non- 
linearity (of a different sort) is an essential feature. These 
two terms-transonic and hypersonic- are most meaningful 
when defined (as here) only for thin shapes. They then 
describe two quite distinct regimes which are, moreover, 
separated by a considerable range of “ordinary supersonic” 
flow in which the transonic and hypersonic nonlinearities are 
unimportant, so that linearized theory can account for all 
significant features of the flow. If one attempts to extend 
the terms to thick bodies, the two separate regimes tend to 
merge, so that one must concede that a flow field can be 
simultaneously transonic and hypersonic. 

It should be noted that the term hypersonic has occasion- 
ally been used in the literature with other meanings than that 
adopted here. Flows are sometimes called hypersonic if the 
free-stream Mach number is simply large compared with 
unity (say, 10 or 5, or even 3). This is not strictly equivalent 
to the present definition because, in principle, at any given 
Mach number 5 body can always be chosen so thin that 
nonlinearity is insignificant. However, such extreme thin- 
ness does not arise in practice, so that the two definitions are 
equivalent for practical purposes. Again, Oswatitsch has 
defined hypersonic flow as the limiting condition for 5 given 
body as the free-stream Mach number tends to infinity 
(ref. 4). This is a limiting case of the present definition and, 

1 I ----_ ---- 
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indeed, Oswatitsch’s similarity rules for thin bodies are 
simply special cases of the more general rules. 

Associated with each of the various small-disturbance 
theories is a similarity rule which connects flows at different 
speeds past affinely related shapes. In the case of linearized 
subsonic and supersonic theory, the similarity rule was fully 
understood only long after the small-disturbance theory was 
in common use. On the other hand, the transonic similarity 
rule was developed concurrently with the smpll-disturbance 
theory. For hypersonic flows, the simplified theory and 
associated similarity I& were first given by Tsien (ref. 5)) 
but were restricted to irrotational flows (and to plane or 
axially symmetric shapes). This is a severe limitation be- 
cause strong curved shock waves and consequent entropy 
gradients and flow rotation are essential features of nearly 
all hypersonic flow problems. This restriction was removed 
by Hayes, who indicated in a brief note (ref. 6) that Tsien’s 
similarity rule is valid for rotational flows and for general 
three-dimensional shapes. The rule was further extended to 
unsteady motion by Hamaker and Wong (ref. 7). 

As a result of this circuitous development, there exists a 
gap in the hypersonic theory. The similarity rule is known 
for full three-dimensional flows with curved shock waves, 
but the underlying small-disturbance theory has never been 
written down. (To be sure, however, its form is known from 
the analogy with nonsteady flow in one less dimension, which 
was pointed out by Hayes.) For the special case of plane 
flow, and for Mach numbers which are not arbitrarily large, 
this gap has recently been closed by Goldsworthy (ref. 8). 
The published examples of applications of the theory are 
limited to the few special cases which are strictly irrotational 
(e. g., the wedge and cone) or are assumed to be approxi- 
mately so. 

The present paper undertakes a systematic study of the 
small-disturbance theory for hypersonic flow. First, the 
small-disturbance problem is derived by reduction of the 
full equations of motion, boundary conditions, and shock- 
wave relations. The similarity rule and unsteady analogy 
appear in the course of this development. This portion of 
the paper may be regarded as an elucidation of Hayes’ note, 
with estimates obtained for the order of error. Next, it is 
pointed out that to within terms of the order neglected, the 
hypersonic similarity theory can be written in the form of 
the similarity theory for linearized supersonic flow, so that a 
single theory and associated similarity rule cover both 
regimes. Then, a number of special problems are solved 
according to the small-disturbance theory and are compared 
with the full solutions when they exist. 

The symbols used in the text are defined in Appendix A. 

HYPERSONIC SMALL-DISTURBANCE THEORY 

BASIC ASSUMPTIONS 

Consider a three-dimensional body fixed in a steady uni- 
form stream. Viscosity and heat conduction are neglected, 
which implies that shock waves will be approximated by 
abrupt discontinuities. 

The body is assumed to be thin, in the sense that the 
streamwise slope of its surface is everywhere small compared 

wit.h. unity. The degree of thinness will be measured by the 
small parameter 7 which.may, for example, be taken to be 
the maximum slope of the body,3 or its thickness ratio. 
However, for inclined shapes r must be indentified with the 
angle of attack if it is considerably greater than the body 
thickness. 

The free-stream Mach number M is assumed to be so high 
that the flow is hypersonic. That is, linearized theory is 
inadequate for predicting the essential features of the flow, 
It is known that linearized theory yields an adequate ap- 
proximation if the maximum body slope is small compared 
with the slope of the free-stream Mach cone, that is, if /+X1 .- 
where /3= ,/M2- 1. As this ratio approaches unity, linear- 
ized theory grows increasingly inaccurate. Therefore the 
flow is hypersonic if the ratio pr is not small compared with 
unity. Since T is small, this means that p and, therefore, 
also M will be large in the hypersonic range, so that p is 
nearly equal to M. Thus, the criterion for hypersonic small- 
disturbance flow may be written 

r<l 
M>>l > 

with MT+1 or >>l (1) 

From a mathematical point of view, it is convenient to re- 
gard all the small-disturbance theories as being asymptotic 
forms of the full theory for vanishing by thin bodies. Thus, 
the criterion for hypersonic flow may be expressed more 
formally as: 4 

(2) 

We introduce a Cartesian coordinate system with the 
positive x axis alined with the free-stream direction (figure 
1). Let the surface of the body be described by B(z) y,z) =0, 
and the complete system of shock waves by S(XJ,Z)=O, 
where the function S is not, of course, known at the outset. 

FIGURE l.-Notation for hypersonic flow past thin body. 

FULL PROBLEM 

Consider the problem of determining the three velocity 
components u, v, w, pressure p, and density p throughout the 
flow field in the vicinity of the body. The mathematical 
system required is the differential equations of motion 

3 If the slope is high in some small region Of the body, as at a slightly blunt leading edge, tt 
may be presumed that the small-disturbance theory remains valid except locally. In this 
case r might be taken to be the thickness ratio. 

4 Here the order symbols are used in the conventional sense: J(r) =0(l) as 7--)0 means that 
/(r) remains bounded as +--) 0; and f(+)=O(&]) means f(r)/g(T) Is O(1); similarly, f(s) =0(l) 
means J(r) vanishes ns r+O. 
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(which govern the flow except at discontinuities) , theRankine- 
Hugoniot relations across shock discontinuities, and bound- 
ary conditions at the surface of the body and far from the 
body. 

Equations of motion.--The differential equations of mo- 
tion, which express the principles of conservation of mass, 
momentum, and energy, are 

_s.._~- ,.:.. .=..,. ,, ~... 
(contmuity) b4z+(P4,+b4,0 (34 
(5 momentum) uwl-~Y+~z+PzIP=o 
(y momentum). u~zfvv,i-wvzi-p,lP=0 gb; 
(2 mdmentum) uw,+vw,i-urwil-p,lP=o (3:) 
(energy) ~~PlP~~,+~(PlP~>,+~~P/p7).=~ (34 

(See, e. g., ref. 9, ch. 1) Here subscripts indicate differen- 
tiation, and Y is the adiabatic exppnent of the gas. The last 
equation actually expresses the fact that the entropy is con- 
stant along streamlines, which for steady flow is equivalent to 
the conservation of energy (ref. 9, pp. 15-16). 

Boundary conditions.-At the body the normal compo- 
nent of velocity must vanish. The unit normal vector at 
the surface is proportional to grad R, so that the condition 
becomes 

;. grad R=O 

where z is the velocity vector, or 

(tangency) uB,fvB,fwB,=O at B=O (4) 

The other boundary condition, which implies that the 
body is flying into still air, may be taken in various equivalent 
forms. For present purposes it is convenient to require that 
all disturbances vanish far ahead of the body: 

v and w-+0 
(upstream) as x+- m (5) 

P+Pm 

P+Pm 

Shock-wave relations.-At a shock wave, conservation 

i 
of tangential momentum leads to the requirement that the 
velocity component tangent to the shock surface be con- 

k tinuous. The tangential velocity component (figure 2) is 
/ given by ;1 = (ZXZ) X$, where the unit normal vector z ispro- 

portional to grad S. It is convenient to use brackets to de- 
note the jump in a flow quantity across a shock wave so that, 
for example, [u] is the increase in u through the shock. With 
this notation, the condition of conservation of tangential 
momentum becomes 

14 bl [WI (tangential momentum) s,=s=~ at S=O (64 

This imposes two independent scalar condit,ions at the shock 
wave, as physical considerations clearly indicate that it 
should. For plane flow, say, in the x-y plane, the last term 
becomes indeterminate and should, of course, be dropped. 

The remaining shock-wave relations express the con- 
pervation of normal momentum, mass, and energy across the 

FIQURE 2.-Components of velocity at shock wave. 
. 

shock. The magnitude of the velocity component normal 
to the shock is (figure 2). 

Consequently, the other three shock relations are found to 
be (ref. 9, p. 300), using the jump notation, 

(mass) [P cusz+~s,+wsz)l=o 

(normal 
momentum) [p (uSz+vSv+wSz)2+ 

(s~2+s;2+sE2) pl=O 

(energy) C 
f cusz+vs,+ws*)2+ 

(3 

at S=O (6~) 

So far, these relations are quite syihmetrical, remaining 
unchanged if the brackets are taken to denote &he change 
upstream rather than downstream through the shock. A 
definite sense of flow direction is provided only by the 
second la,w of thermodynamics, which requires that the 
entropy shall not decrease across each shock wave, so that 

(2nd law of thermo.) [I ” 20 at S=O (64 
P 

Fbr later use we record Bernoulli’s law 

f (u2+v2+w2)+& $=const. (7) 

which holds, with the same constant, throughout the flow 
field. 

FIRST-ORDER PROBLEM 

The full problem is now to be simplified by discarding all 
but leading terms in the body thickness 7. This will give a 
first-order hypersonic small-disturbance theory, which can 
be expected to provide a close approximation for thin shapes. 

The reduction is convenient,ly carried out by introducing 
new independent variables which are of order unity through- 
out the flow field. The form of this transformation is 
suggested by simple examples and limiting cases. For 
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example, the approximat,e solutjon for a t,hin piano wedge at 
very high Mach number has been given several times. 
Pertinent results are that the lateral extent of the flew field 
is some moderate multiple of the wedge thickness, that. the 
density never exceeds (-& l)/(y-- 1) times it,s free-&ream 
value, and that the relative st,reamwise velocity disturbance 
and the pressure coeEcient are of the order of the square of 
the surface slope. Again, the Newtonian impact theory, 
modified to include effects of centrifugal force, which yields 
the limiting solution for M= 00 and y= 1, shows pressure 
coefficients proportional to the square of the thickness. 
The tangency condition suggests that, in-general, all cross 
wind velocities vary directly with the thickness. Such 
considerations suggest introducing new (barred) independent 
and dependent variables, and redefining the functions 
describing the body and shock-wave surfaces, as follows: 

5=X 7 
f=; y 

(Sal 

@b) (mass) [p &fvS;fwS;)] =o 
(normal 
momentum) [~(27;+Z~+wS;)*+ 

(3~“+73;‘)jq = 0 

(energy) 

The new dependent variables are dimensionless, and the 
new independent variables may also be regarded as dimen- 
sionless if the body is of unit length. 

(2nd law F 
of thermo.) [I ‘=- 20 

PY 

We tentatively assum.e that all the new dependent, vari- 
ables (Z, V, etc.) and the new functions B and g are O(1) as 
r-+0 for fixed MT, and that the reciprocals of the new 
independent variables (l/Z, etc.) are likewise O(1). The 
correctness of this assumption is suggested by examples such 

.as those discussed above; its justification will come from the 
consistency of the resulting theory. 

The parameters M and 7 of the full problem enter t,his 
reduced problem only in t.he combination A4r, which appears 
only in the up&ream condition on p (eq. (12)). II; the 
hypersonic range, where l/Mr=O(l), the reduced problem 
possesses complete internal consistency. This is most read- 
ily understood by considering first the case where it does not. 

It is important to realize that the notation 1?= 0( 1) includes 
the possibility that in the limit ij becomes arbitrarily small as 

well as the possibility that, it approaches a constant nonzero 
value; only the possibility of its growing arbitrarily large is 
ruled out. For example, the.reduced veIocity component,s 
ii, V, and E will be identically zero in the region ahead of the 
body. On the other hand, it is -definitely implied here tha.t 
in at least some portion of the flow field the reduced quanti- 
ties will not vanish in the limit as ~40.~ . To be sure, they 
may not all be of order of m.agnitude unity in the intuitive 
physical sense; for example, for Aow past, a thin flat wing 72 
and Z will be moderate multiples of unity, but GJ will be 
numerically much smaller. 

In the range of linearized theory, where 6 Mr<l, equa- 
tion (12) presents a contradiction. It was assumed at-the 
outset. that i is O(1) but its value upstream, (1/M22),, is 
then not O(1). This inconsistency is an automatic warning 
that the reduction breaks down in the range of linearized 
theory. Indeed, it, will be seen later that the assumed 
orders of reduced quantities are then actually incorrect,, 
aud that the reduced equations fail to describe linearized 
supersonic flow. 

In t.he hypersonic range no such inconsistencies arise. . 
Hcuce, the t,entative assumptions regarding orders of re- 
duced quantities are justified a posteriori, 8.s arc the sim- 
plifications cffect,cd by discarding terms that involve 72 
explicitSly. 

1 That is, f(s) =0(r) implies tbat f(r) is not identically o(r). 6 More precisely, whew .\lr=o(l) as ,+I’. 

Reduced problem.-This t,ransformation of variables is 
now introduced into the full problem of txquations (3) bo (6). 
If we discard terms which contain 2 explicitly, such as rm; 
in the cont.inuity equation, t.ho dificrmtial equat.ions b&ome 

LZ momentum) z~+zi#i%i;+~~/p=o (9) 

(continuity) ;;+(Pu);+G&=o (loa) 

(y momentum) T;+vv;+zT;+jgT=O (lob) 

(2 momentum) iz;+Yz.G~+iiG;+j-TJ~/p=0 w> 

(energy) ~l~v));+~~l~v)~+~~~)i=O (104 

I ho boundary conditions become 

(t.angency) B~+Z~+wBi=O at B=O (11) 

E,F,Z-+O 

(upstream) ji + l/.yM2r2 

I 

as?-+--- (12) 

p+1 

and the jump conditions at the shock waves become 

l at B=O (13) 
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Order of error.-Because terms of order ? have been 
omitted in the reduction, first-order quantities will differ 
from their exact values by O(g). For the special case of 
plane flow, an analysis similar to the preceding has been 
given by Goldsworthy (ref. 8), who considers only a single 
bow wave: ’ he furthermore confines attention to the range 
&i~-1 (which, to be sure, may be the range of most prac- 

‘-‘_-: .” tical importance). and finds the error to be O(l/M2). This 
is equivalent to the present result in that range. However, 
the present result is more general, holding for arbitrarily 
large values of the similarity parameter (assuming, of course, 
that the assumption of a continuum flow remains valid). 
For example, at infinite free-stream Mach number, the 
error in first-order theory is correctly O(T~). 

It is interesting ‘to note that the error in the various first- 
order small-disturbance theories decreases progressively from 
O(T~/~) in transonic flow to O(T) in linearized supersonic flow 
to O(T~) in hypersonic flow. Therefore, under the plausible 
assumption (confirmed by later examples) that these mathe- 
matical order estimates give a reasonable indication of the 
actual physica. magnitude of error, the practical need for 
a second-order solution is seen to be greatest for transonic 
flow and least, at hypersonic speeds. 

Unsteady analogy.-A significant feature of the reduced 
problem is that the problem for the streamwise velocity ?i 
has been uncoupled from that for the other variables. Equa- 
tions (10) to (13) constitute a complete problem for V, Z, i?-, 
and p, which can be solved independent of Z. Thereafter, 
Z (if required) can be det’crmined from Bernoulli’s law: 

Consequently, equation (9) and the first terms of equations 
(12) and (13a) are superfluous and can henceforth be tlis- 
regarded. 

As pointed out, by Hayes (ref. 6), this first-order problem 
is complet,ely equivalent to a full problem for unsteady flon 
in one less space dimension. The reduced problem of equa- 
tions (10) to (13) is precisely the full problem of unsteady 
motion in the V-Z plane due to a moving solid boundary 
described by B(Z:,q,Z)=O, where f is interpreted as the time, 
and all other barred vjriables as the actual physical quan- 
tities.s The outline of the moving boundary is given by the 
tract of the original thin shape in a cross-stream plane which 
moves downstream with the free-stream velocity (figure 3). 
For example, the problem of steady hypersonic flow past a 
slender pointed body of revolution is equivalent to the prob- 
lem of unsteady planar motion due to a circular cylinder 
whose radius varies with time, growing from zero at time 
Z= 0. Hayes ha.s given a physical explanation of this analogy. 

It may be noted that thti analogy is similar t’o that arising 
in the slender-body theory of ,lineerized compressible flow, 
as exemplified by the work of Jones (ref. 10) and Ward 
(ref. 11). There, however, the t,ime-dependent analog is 
incompressible, whereas here it is definitely compressible. 

1 It ~ecms importmt to consider multiple shocks, hccause it is not at all obvious that suh- 
sequent shocks hnvc the smx status as the horn shock; in porticulw, ot M= m the upstrmm 
Xach number is in6nite for the how shock, hut hos moderate su~wrsonic ralurs for the suhsc- 
quent shocks: 

8 The undisturbed fluid has density z, =1 and ~)rcss~tr~~ =I/r.WW. 

FIGURE 3.-Plane of unsteady analogy. 

Similarity rule.---The parameters M and T appear in the 
reduced problem only in the combination MT, which is the 
hypersonic similarity parameter of Tiien. This means that 
for bodies derivable from one another by uniform contraction 
or expansion of all dimensions normal to the stream, the flow 
fields are related if the corresponding Mach numbers are 
such that the similarity parameter MT is the same in each 
cam. The nature of this relationship is simply that the re- 
ducecl flow quantities, as functions of the reduced coordinates, 
are the same in each flow. All distinctive flow surfaces, such 
as the body itself and t,he shock-wave system, have identical 
descriptions in terms of the reduced coordinates. This is 
the hypersonic similarity rule of Tsien, which was ext,ended 
to rota.tional and t,hree-dimensional flow by Hayes. Its im- 
plications with regard to pressure and force coefficients will 
bc summarized later, after the hypersonic rule has been com- 
bined with that for ordinary supersonic tlow. 

Extension to unsteady flow.-For simplicity, the preced- 
ing discussion has been restricted to steady flow. It can 
readily be extended to unsteady motions involving small 
time-dependent oscillations of a thin body exposed to a steady 
uniform stream (or, from another point of view, flying through 
still air executing slight time-dependent variations from a 
mean steady rectilinear flight). The full problem is ok- 
tained by replacing a substantial derivative z~b/bx+vb/b y+ 
wbJbz wherever it appears in equations (3) to (6) by its un- 
steady counterpart, bJbt+ub/dx+vb/by+wb/bz. Corre- 
spondinglJ, if a reduced time E is introduced according to 

z=u,t 

then the unsteady small-disturbance problem is obtained 
from the st,eady problem of equations (9) to (13) by adding 
d/a? throughout to the operator ~lbZ+&/bij+ZblbZ. For 
example, t&e reduced continuity equation (eq. (lOa)) be- 
comes, for unsteady motion 

zs+i$+ (i-4;+ (pzu),=O (16) 

.___. - . . -_ . . _ ._.. --_. . . . . . . . . a..-- 
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The problem for ii remains uncoupled from the problem 
for the other variables.g Furthermore, in the remaining 
problem the Z and 2 derivatives appear only in the combina- 
tion d/d%+b/bZ. This means that the number of independ- 
ent variables can be reduced by one by adopting the view- 
pbint of an observer who is moving with the free stream (or, 
to put it another way, who is fixed in still air with the body 
moving past). Thus, introducing “st,ill-air” coordinates 

x’=X-umt Zi=T--u.,7 

> 
(17) 

t’=t t/=y 

reduces the unsteady small-disturbance problem to exact,ly 
the form of t,he steady problem (eqs. (9) to (13)), with 1 re- 
placed by 7’. This means .that Hayes’ analogy remains 
valid for unsteady mot,ion if account is taken of the actual 
variation of the contour with time as well as the apparent 
variation due to relat’ive mot.ion depict,ed in figure 3. This 
result was first given by Hamaker and Wong (ref. 7). Re- 
cently, Lighthill has analyzed oscillating airfoils at hyper- 
sonic speeds from this point of view (ref. 12). 

If the body oscillates so rapidly or with such large ampli- 
tude that B; is much great,er t.han B;, t,he error remains of 
O(2) only if T is taken to be the maximum instantaneous 
slope of particle paths at the surface of the body. 

Unified supersonic - hypersonic sm&ll - disturbance 
theory.-It would be advantageous if the hypersdnic small- 
disturbance theory included linearized supersonic theory as 
a special case. Then the awkward question of what is the 
lower limit of hypersonic flow would not arise. A single 
theory, and corresponding similarity rule, would hold for all 
supersonic speeds above the transonic range. 

In the case of transonic s&all-dist.urbance theory, a uni- 
fication of this sort is known to arise quite naturally (ref. 
13, p. 9). In its original form (with p2 not replaced by 
2(&G-l)) transonic theory embraces linearized theory as a 
special case, so that it furnishes effectively a unified subsonic- 
transonic-supersonic theory giving a first approximation at 
all speeds below the hypersonic range. 

In the case of hypersonic flow, a connection with the ad- 
joining supersonic range can likewise be effected (ref. 14), 
but the reason therefor is much less straight,forward. An 
immediate obstacle is the fact that t,he approximations lead- 
ing to the hypersonic theory and those leading to linearized 
theory are mutually exclusive. The difficulty arises in the 
continuity equation (eq. (3a)) which in the hypersonic case 
was shown to reduce to 

UOJPZS CPU>,+ CPw)z=O 

but in linearized theory reduces instead to 

U,P,S-P,U,+P,(21,+w,)=O (18b) 

The term p-u, must be retained in linearized theory, 
whereas it must be neg!ected in hypersonic theory in order 
to achieve similitude. It would therefore appear impossible 

0 Han-ewr, z can no longer be found immediately in terms of the solution of the remainhg 
problem, because in unsteady motion there is no useful countergnrt of the Bernoulli equation 
(eq. (14)); lortunately, u is seldom actually required. 

to give a small-disturbance theory which is general enough 
to describe both hypersonic and ordinary supersonic flows, 
and yet simplified enough to retain the corresponding simil- 
itudes. It must be regarded as a coincidence that this can, 
nevertheless, be accomplished. 

It is shown in Appendix I3 that the hypersonic theory 
cdvers the ordinary supersonic range if it is reinterpreted in 
accordance with the similarity rule for linearized theory 
(ref. 15). It is found that solutions of hypersonic small- 
disturbance theory remain valid at small values of the 
parameter MT (which is the domain of linearized theory), 
provided that MT is replaced by /3r and the results are re- 
interpreted in terms of physical variables according to 

,=,,{ 1+$[p(,Y,z; m-l])=p. ($k+) 
J 

rather than according to equation (8). The pressure 
coefficient is given by 

C,E p--p- -2 2 .puz- r (P-a 1 
m m 

Ogb) 
L 

Since the error is O(T~) in the hypersonic theory and O(T/@) 
in the linearized theory, the error in this unified theory is 
O(T~) or 0(7/p), whichever is the greater.‘O 

The flow quantities of chief aerodynamic interest are the 
pressure coefficient and the various force and moment co- 
eEicients derived from it by integration. If the hypersonic 
small-disturbance problem has been solved to find C,/T’ as a 
function of the reduced coordinates and the parameter MT, 
the result is rendered valid -also in the ordinary supersonic 
range simpIy by replacing MT by 8~. 

Unified similarity rule.---The unified supersonic-hyper- 
sonic similarity rule may be summarized as follows; 

For steady Aow past thin bodies derivable from one 
another by uniform contraction or expansion of all dimensions 
normal CO t,he stream, the flow fields are related if the cor- 
responding Mach numbers are such that the similarity 
parameter.Pr is the same in each case (r being any measure 
of thickness). The relationship is such that the flow fields 
are identical when expressed in terms of tile reduced flow 
quantities 

u-u, v w P-P, 
--T---f -T 7uf --Tf- or 4, & F-1 

TU, mu, m MTP, ( > m 

‘ts functions of the reduced coordinates 

IQ For slrnder shapes such ils thin bodies of revolution. the error is only O(~z/fl?) in the lin- 
,orized theory and, hence, U(S) or O(fW*) in the combined theory. 



A STUDY OF HYPERSONIC SMALL-DISTURBANCE THEORY 7 

When the body oscillates slightly, the same is true with the 
addition of u,t to the reduced coordinates, provided that 

‘the time history of oscillation in terms of reduced coordinates 
is the same for each body. 

From the rule for pressures follows the equality of the 
reduced force and moment coefficients 

Here k= 1 if some plan-form area is taken for reference and 
k=O if some cross-sectional area is used. The connection 
between the similarity rules for forces and moments is con- 
tained in the statement that the center of.pressure is constant 
in terms of the reduced coordinates. 

An unlimited number of equivalent forms of the reduced 
variables can be produced, for example, by multiplying by 
any power of the similarity parameter. However, the forms 
given here are the most useful ones in the hypersonic range, 
because they involve functions of order unity. In the super- 
sonic range no forms have this- advantage, except in the 
special case of plane flow, where it would be convenient to use 

It should be noted that in the hypersonic and combined 
similarity rules the adiabatic exponent y must remain 
fixed, whereas its magnitude is arbitrary in the supersonic 
case (since it does not appear in the linearized problem). 

TYPICAL APPLICATIONS OF HYPERSONIC SMALL- 
DISTURBANCE THEORY 

Several problems will now be solved according to hypersonic 
small-disturbance theory. These examples will illustrate 
possible methods of solution, and demonstrate the degree of 
simplification resulting from the assumption of small dis- 
turbances. Comparison with the corresponding solutions of 
the full equations (when available) will indicate the accuracy 
to be anticipated when the theory is applied to more elabo- 
rate problems. 

PLANE AND AXIALLY SYMMETRIC FLOWS 

The examples to be considered are either plane or axially 
symmetric flows. Accordingly, it is convenient to introduce 
coordinates X,T where in the case of plane flow T is the Car- 
tesian coordinate y. Henceforth, v will denote the velocity 
component in the T dire&ion, which is the radial velocity 
for axially symmetric flows. 

Equations ‘of motion--In these coordinates, the hyper- 
sonic small-disturbance equations of motion (eqs. (10)) 
become 

$+(a;+u +o (2W 

g;+~;+&) 
P 

(20b) 

@G%+5i@/3;=0 (204 
The distinction between two and three dimensions arises only 
in the continuity equation, where a=0 for plane flow and 
~r=l for axially symmetric flow. 

3X450-55-2 

I 

. 

FIGURE 4.-Notation for plane or axially symmetric body. 

Boundary and shock conditions.-Let the surface of the 
body be described by r=rb(x), as indicated in figure 4. 
Then the tangency condition of equation (11) becomes 

F=b’(Z) at P=b@) (211 

The upstream conditions are given by equation (12). 
The examples to be considered will involve only a single 

bow shock wave, which may be described by r=rs(x). The 
shock-wave conditions are given by equations (13), but in 
this case it is easier to take advantage of the convenient 
relations which are listed in reference 16. Equations (136), 
(128), and (129) of reference 16, when reduced to hypersonic 
small-disturbance form, give 

2 K2--1 yj=- ~ 
‘I’+1 K2 

S’G) 

jj= 2-t’K2- (7- 1) 
?(?+l) K2 S”O at ?;=s(Z) (22) 

p=--(^i+l) K2 
2+(*/-l) K2 

J 

where K=kfd(~) is the hypersonic similarity parameter 
based on the local shock-wave slope. 

Stream function--The continuity equation (eq. (20a)) 
may be accounted for by introducting a stream function, 
setting 

.(23) 

so that 

c (24) 

Then equation (20~) sta.tes that j7br is a function only of #, as 
is clear from the fact that entropy is constant along stream- 
lines between shock waves. Substituting into the momen- 
tum equation (20b) gives , 

/ 
,” . -..- - ..- ._....-- -- 



8 REPORT 1194-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

W’+’ (Y4%+ W’iw for plane flow (2W 

v%2hY--waw~+~~2~~= j(/Jfl 
+ [XJ ($:-?)+u’&~] for axially symmetric flow (25b) 

where . 

w M> =FP (25~) 

The pressure is given by 

PLANE WEDGE 

As a simple introductory example, consider hypersonic 
flow past a thin wedge of semivertex angle 6. Here, and in 
th:: examples to follow, the solution is most readily carried 
out by assuming a given shock wave and Mach number and 
calculating the corresponding body shape. It is therefore 
convenient to identify the thickness parameter 7 with the 
shock-wave angle rather than the wedge angle. This is 
quite permissible at hypersonic speeds, where they are of the 
same order; it is also permissible in the ordinary supersonic 
range, where they are not, provided that 6 rather than 7 is 

. used in the error estimates. Let b=6/r be the ratio of wedge 
to shock angles. 

The flow field is conical (velocities constant along rays), so 
that the stream function has the form 

$qiz:,7) =Zf@> (27) 

where e is a conical variable, defined by 

which varies from b at the wedge to unity at the shock wave. 
Thus, equation (25a) becomes 

f” Lf2--fwof m+1q,o 
(29aJ 

where, from equations (22) and (25~) 

2-fKo2-(Y-1) 
""7 -f(?+l)Ko' 

2+(-f-1)Ko2 ' 

(~+1)Ko2 1 
with K~==MT. The shock-wave conditions of equation (22) 
give (since s’= 1) 

(yfl) Ko2 
f'(1)=2+(7--l)Ko2 

(30) 

The solution of this problem, which corresponds tof”= 0, is 

(31) 

Requiring f to vanish at the surface gives the ratio of wedge 
to shock angles 

(32) 

The auxiliary hypersonic parameter Ko=ibfr can now be 
eliminated in favor of MS, with the result that 

(33) 

Then from equations (26) and (27) the pressure coefficient 
at the wedge (or anywhere between t,he wedge and shock 
wave) is found to be 

(34) 

These results were first given by LinQel (ref. 17). Numerica 
values of pressure coefficient are compared in figure 5 with 
the exact results for wedges of various thicknesses. Here 6 
has been taken to be the tangent of the wedge angle, though 
within the scope of the small-disturbance theory it might 
equally well have been identified with the sine of the angle, 
the angle itself, etc. 

MRo’ 

FIGURE 5.-Wedge pressure according to hypersonic small-disturbance 
theory. 

Unified supersonic-hypersonic result.-Replacing the 
parameter .A& by /% renders the solution valid in the ordinary 
supersonic range as well: 

(35) 

This result is again compared with the full solutions in figure 6. 
The advantage of the unified result is obvious. In all sub- 
sequent examples the results will be presented only in this 
form. 
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FIGURE K-Wedge pressure according to unified supersonic-hypersonic 
small-disturbance theory. 

It is interesting to note that this formula has been proposed 
by Ivey and Cline (ref. 18) for predicting the surface pressure 
on any supersonic airfoil. They obtained it by seeking an 
inte-polation formula connecting Ackeret’s linearized theory 
with the hypersonic res,ilt of Linnell (eq. (34)) for a tangent 
wedge. 

INITIAL GRADIENTS FOR PLANE OGIVE 

lising the full equations, Crocco ;Irst determined the initial 
gradiems of flow quantities at the tip of a plane ogive by 
perturbing the solution for a wedge (ref. 19). His analysis 
has been repeated and elaborated upon by Schafer (ref. 20) 
and others. This problem provides a good test of the small- 
disturbance theory in a case involving shock-wave curvature. 
Let b be the initial ratio of body slope to shock-wave slope, 
and 1 the corresponding ratio of radii of curvature. Then in 
physical coordinates the body (figure 7) may be described by 

r,,=T bx+; es”+ . . .) (36) 

and the shock wave by 

FIGURE F.-Plane or axially symmetric ogive. 

-8=b 

e=o *X 

Here c will be negative for the convex shapes usually en- 
countered in practice. 

Shock-wave conditions.-Conditions just behind the 
shock wave are found from equations (22) to be given by 

2(Ka--1) 
--1L.i===2+(y4)Ko2 

1 +(~-~)KL~*+(~+~)KcI~-~ Icz+ 

(Ko2--1) [2+(“/---1)Ko7 
. . . 

1 NW 
w=~,~y=~+~~-l) 2+t+---1)‘@ ‘Y 

Y(“I+1)Ko2 C (y+l)Ko’ X 
l+ 

4-f('-f--1) (Kc,~---~)~, 

[27K02-('Y-1)] [2+(7-1)Kr~~] 
lea- . . . (3fw 

where K~=MT is the auxiliary hypersonic similarity param- 
eter based upon the initial shock-wave angle. 

Equations of motion-The flow behind the shock wave 
will consist of a uniform field upon which is superimposed a 
perturbation field due to body curvature. Hence, along 
each ray from the vertex the flow quantities will have con- 
stant values associated with the initial slope of the body plus 
linear variations proportional to the initial curvature 
(together with higher variations which need not be considered 
in evaluating iniblal gradients). Thus, the stream function 
of equation (25a) can be written in the form 

~(~,~)=~f(e)-ZcZ2g(fl)+ . . . (3% 

Along the shock wave 

*=r=:+ . . 

so that the entropy function w can be written as #(o) by 
replacing Z by pin equation (38~). In this form (since w is 
constant along streamlines) the expression applies through- 
out the flow field downstream of the shock wave, so that 

where 
(404 

-27K02-((Y-1) 2+('7--1)K~,~ ' 
w”- -Y(^/+ 1)Ko2 (r+ 1)Ko2 1 

47(-f---1) (Ko2--1j2 
WI=2 

[~-~KLI ---(-f--l)] [2+(7-- l)K$] 

(4Ob) 

Substituting these expansions for fi and w into equation 
(25a) and equating like powers of x yields two ordinary 
differential equations., The first is equation (29a), corre- 
sponding to the basic flow past a yredge. The second, when 
simplified with the aid of equation (31), becomes 

f2g’fM2ff’g’+2f ‘2g=W0f’(yfl)(yg”-W j’2) (41) 

Solution for g.-By expressing conditions just behind 
the shock wave in terms of conditions at 8= 1 through Taylor 
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expansion, the boundary conditions on g are found to be 

(42) 

The velocities associated with g vary linearly with distance 
from the apex. Hence (as is readily verified from the differ- 
ential equation), g is a. quadratic function of 8, and can 
therefore be written as 

(43) 

Here only g”(1) is unknown, and it is immediately found 
from the differential equation to be 

Curvature ratio and surface pressure.-The body curva- 
ture and pressure gradient can be expressed in terms of the 
values of g(e) and its derivative at O=b. From equations 
(42) to (44) it,is found that 

. . 
2(2^/-l)Ko4+(~+5)Ko2-((Y-1) 

g(b)= (‘t’+l)(Ko”-l)[2+(~-1)Ko2] 

2K02(3K02+ 1) 
(45) 

g’(b)=-(K$-1)[2+(~--)Ko2] 

The surface of the body is determined by the vanishing of 
the stream function. Thus it is found that the ratio of 
shock-wave curvature to body curvature is given by 

l,.f’(b) _ (?‘-I- 1)2~02(~02- 1) 
-_ 
2g(b) 2[2(2^/--)K”4+(Y+5)Ko2-(?1)] 

(46) 

The initial pressure gradient on the surface of the body is 
given by 

P = -.ywj’(b)‘gl(b) & ac 
ax b g(b) 

(47) 

so that in terms of the initial slope Ro’= br and curvature 
RO”=cr of the body 

=,I _ (^I+ 1)Ko2(3K02+ 1)[27K02-(7- I)] 

~~,-(K~-1)[2(2~-~)Ko4+(~+5)Ko2-(~--)] 
Ro’Ro” (48) 

Although these results have been expressed in terms of the 
auxiliary parameter K~=MT, they can be given explicitly in 
terms of Mach number and apex angle (in the combination 
MR,,‘=Mbr) with the aid of equation (33). In this respect 
the small-disturbance solution is superior to the full solu- 
tion, which yields no such explicit results. Replacing 
MRo’ by PRO’ renders these results applicable at all super- 
sonic speeds. 

The small-disturbance result for the curvature ratio is 
compared in figure 8 with the full solution for various vertex 
angles, taken from the convenient tabulation of reference 21. 
Figure 9 gives the corresponding comparison for the initial 
pressure gradient. 

I 

4 

PRo/ 

FIGURE S.-Initial ratio of shock to body curvature for plane ogive. 

acp 
dm 

Figure B.-Initial pressure gradient on plane ogive. 

CIRCULAR CONE 

Consider flow past a slender circular cone of semivertex 
angle 6, (figure 10). Again it is convenient to regard the I 
Mach number and shock-wave angle as given, and to solve 
for the corresponding cone angle. Thus let the shock-wave 
angle be 7 and the cone angle 6= br, where again b is a 
constant less than unity that is to be determined. 

Equation of motion--The flow field is conical so that all 
flow quantities are constant along rays. This means that 
the stream function of equation (%b) has the form 

FIGURE lO.- Notation for cone. 
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It follows that the equation of motion (eq. (25b)) becomes 1 
nonlinear ordinary differential equation 

4fj’r-2j~2=~~oj I ( 

Here w. is the constant value of ~/j? behind the she 
wave, given by equation (4Ob), and tcO=Mr is again 1 
auxiliary hypersonic similarity parameter based upon shot 
wave angle. 

Boundary conditions.-The shock-wave conditions 
equation (22), together with equation (49), combine to g: 

h+ 1)Ko2 
f'(1)=2+(,-1)Ko2 

J 

The condition of tangent flow at the cone requires tl 
the stream function vanish at the surface: 

f(b) = 0 C 
Numerical integration.-The nonlinear equation for 

equation (50)) can be readily integrated numerical 
Choosing a value of the auxiliary similarity parameter 
we calculate w. from equation (40b) and the initia.1 vah 
of j andf’ from equations (51), and then integrate step 
step inward from the shock wave until j vanishes, whi 
determines the cone surface. With the ratio of cone an! 
to shock-wave angle a/r=b thus determined, the resu 
can be re-expressed in terms of the similarity paramel 
based upon cone angle. Eight or ten intervals betwe 
shock wave and body yield ample numerical accurac 
provided that in each step the predicted values of j and 
derivatives are corrected by averaging and iterating befc 
proceeding to the next step. (For values of Kg near unil 
the first few intervals near the shock wave must be tak 
smaller than the others.) 

The pressure coefficimt is obtained in terms of the fil 

derivative of the stream function according to 

4=2 [$ ($,)7-7&] 

where the similarity parameter MS of the hypersonic prc 
lem is to be reinterpreted as @ S  so that the result is applical 
throughout the entire supersonic range. 

Computations ha.ve been carried out for y=l.405, 
order to compare with the full solutions tabulated 
Kopal (ref. 22). The chosen values of the parameters a 
listed in the following table, together with certain of t 
results: 

1. 04 0. 3620 
1. 19 .5545 
1. 58 . 7281 
2. 87 .8604 
4. 47 .8921 

m  .9140 

0. 3765 
6599 

1: 150 
2.469 
3. 988 

co 

1. 217 
1.522 
2.207 

2 :5; 
6. i49 

I I I I 

3. 183 
2. 646 

; 
2: 

2: 
116 

2. 091 

- 

the 

)ck 
;he 
zk- 

of 
ive 

51) 

lat 

52) 

f, 
1Y. 
Ko, 
les 
by 
.ch 
$e 
Its 
ter 
en 
>Y, 
its 
)re 
;Y, 
en 

rst 

53) 

lb- 
Ae 

tre 
he 

The small-disturbance result for surface pressure is com- 
pared with the full results (from  ref. 22) in figure 1.1. 

4 

3 

CP 
2 

2 

I 

0 

-r---r- 
,--knoll-disturbance the’ary 

/I 

FIGURE Il.-Surface pressure on cone. 

The differences between the full solution and the small- 
disturbance limit are closely proportional to the square of 
the thickness, in accordance with the estimate of the error as 
O(?j2) or 0(6”//3’). It is noteworthy that the fractional differ- 
ences are in fact very nearly equal to 62. The same is true of 
surface, pressures in the previous examples. This suggests 
that the mathematical order estimate may be relied upon to 
give a quantitative prediction of the error in the small- 
disturbance approximation. 

This approximate solution for cones was previously sought 
by Shen (ref. 23), whose result is also shown in figure 11. It 
appears that his solution, which involves more involved 
computations, must contain errors. 

INITIAL GRADIENTS ON OGIVE OF REVOLUTION 

Consider the axially symmetric counterpart of Crocco’s 
problem: the determination of the initial gradients of flow 
quantities at the tip of an ogival body of revolution. This 
problem has recently been considered for the full equations 
by Cabannes (ref. 24) and by Shen and Lin (ref. 25). It will 
be seen that the small-disturbance solution serves as a useful 
guide to the full solution. In particular, it clarifies the 
behavior of the solution near the surface, which was glossed 
over by Cabannes and in Shen and Lin’s work was mis--; 
construed to indicate a singularity which implied wrongly_ 

..:, 
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that the initial pressure gradient at thti’tip of an ogive is 
infinite. 

As in the plane problem; let the body be described in 
physical coordinates by 

rb=T bz+; CX2+ . . . 
( > (54) 

and the shock wave by 

r*= 7 x+1 lcx2 f 
\ 2 ..” > 

(55) 

(figure 7). Conditions just behind the shock wave are given 
by equation (38), with --#; and k replaced by --#z/F and 
W. 

Equations of motion.-Again along eac.h ray the flow 
quantities have constant values corresponding to the initial 
slope plus linear variations proportional to the initial curva- 
ture (together with higher variations which are considered 
later). Hence, the stream function may be written in the 
form 

giy)=z~(e)-cz~g~e)+. . . (56) 

Along the shock wave 

so that an expression for the entropy function w throughout 
the flow field downstream of the shock wa.ve is obtained by 
replacing f with fl$ in equation (3%). Hence, 

w(9)=wo[l+lcwl,~+ . .I (57) 

where a0 and wI are given by equat‘ion (40b). 
Substituting these expansions int.o equation (25b) and 

equating like powers of Z yields for j the nonlinear ordinary 
differential equation already trea.ted in the problem of t,he 
cone (eq. (5O)), and for g the linear equat,ion 

Dg”=A+Bg+Cg’ 

whose coefficients depend upon j according to 

(584 

B= 12jj" I 

.f 1 rf+11 
D=rwo -4f2 p-1 

As in the plane problem, initial conditions on g are found 
by expressing conditions just behind t,he shock wave in 
terms of conditions at 8= 1 t,hrougb. Taylor series expansions: 

g(l)= Ko2-1 
2+(7-- l)Koi 

2 (~-1)~0~+2~2?'+3) 
d(l)=--Ko [2+(*/-])Ko2]2 

i 

(59) 

Behavior of so&ion near body surface.-Just as condi- 
tions at the curved shock wave have been related to those at 
8= 1, so with the present coordinate system it is necessary 
to relate conditions at, the surface of the body to those on the 
initially tangent cone 8= b. Iiowever, the solution is non- 
analytic near the surface, which means that Taylor selies 
expansions do not, exist. It is therefore necessary to examine 
the nature of the solution in the vicinity of the body. 

The function f associated with the basic conical flow is 
analytic near the surface (and vanishes at 0=b), so that it 
has a Taylor series expansion: 

f(e)=(e--b)f(b)+ot(e-b)21 030) 

It follows I”rom equations (58b) and (60) that near the surface 
the coefficients of the differential equation for g behave like 

A-((s-b)-ll: 

B-(e-b) 

C-l 

D-l 

c 031) 

Therefore the point B= b is a singular point of equation (58a), 
but is an ordinary (nonsingular) point of the homogeneous 
equation obtained by deleting A (see ref. 26, p. 73). There- 
fore the general solution of the homogeneous equat,ion is 
analytic and can be taken to have the form 

gh=ga,(e-by 
0 

(62) 

where all higher co&?cicnts CI, can bo expressed in t,erms of 
the two arbitrary const,ants a, and al by means of t.he differ- 
cntial equation. Then t,he procedure for calculating a 
particular integral (ref. 26, p. 122) shows that the nonhomo- 
geneous equa.tion (58a) has a partic~ular int.rgra.1 of the form 

mhcrc the caocfficicnts c,, can all bc determined. Here Ihe 
3/2-power branch point, a,riscs from the fact that t.he pencil 
of fluid striking the tdp of the ogive is spread t,hin over the 
ent,ire surface, and t.1~ linear entropy gradient at the tip 
duel to a curved shock wave is thus inttnsificd to a squnrc-root 
gradient normal to t hc surfacr rlscwhcre. The comp1et.e 
solution of equation (58) is the sun1 of gh antlg,. 

In t.rca,t,ing the full problcnl in rcfcrrncc 25, Shen n,nd Lin 
claimed to have found a. logarithmic singularit.>- at, e=b, 
which considerably complicated their a.nnlysis. 13c~nuse of 
t,his singularity, their solution was rMricted to conca,vc 
boclies (although they c*oujcct.ured that. it might be cxtcntlcd 
t,o convex bodies). The singularity also led to the conclusion 
t,hat for n.n analytic body shpc the shock xxv-e is nonana- 
lytic, and vice versa. li‘urtl~rrmorc, the singularity would 
imply that the init,inl prcsure gratlirnt~ on an analytic body 
of revolution is infinite! nlthough numerical solutions by the 
mrt,hod of chnrart crist ic as gi\.c> 110 indicn.tion of this. 
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The present solution shows no such singdlarity. It seems 
unlikely that a singularity could have disappeared as a result 
of making the small-disturbance approximation, since this 
would imply that t.he approximate model does not retain the 
essential features of the full problem. The alternative con- 
clusion is that the singularity does not actually exist in 
the full problem. This has subsequently been confirmed by 
the authors of. reference 25 I1 who find t,ilat t+c~sing,ularity is, 
in fact, only apparent, in the sc’nse of reference 26, page 406. 

It may be noted that Ca.bannes, in treating the full 
problem, has completely ignored t.he nonanalytic nature of 
the solution, and simply extrapolated his numerical solution 
t.o the surface of the body (ref. 24). His results may not be 
seriously in error, because t,hc effect of the nonanalyticity 
is small. 

Numerical integration.-The differential equation for g 
has been integrated numerically for the six values of the 
similarity paramet#cr chosen previously for the cone. The 
integration was carried out.‘st)ep by step starting from the 
known values at the shock wave and using the same intervab 
as for the cone. This step-by-step solution was joined at the 
two points nearest, the surface with the series expansion 
about 0=b given by equations (62) and (63): 

g(e)=2$ w2f’(b)3’*(e-b)3’2 cl+; c-(; X-A) e2+ . . .]+ 

g(b)[1+2Xe3--X(1+2X)r4+ . . .I+ 

g’(b)@-b) (1+$ e-7 x8+7 Xr3+ . . .) (6W 

where 

A= ywo Lw,” 
b 1 -l, e=e-! 

b 

(Values from the step-by-step integration and the series 
expansion were a.lso compared at the third point from the 
surface as a check.) Because they are based upon the 
previous solution for a cone, the computations were carried 
out with y= 1.405. 

Curvature ratio and pressure gradient.-Because the 
nonanalyticity appears only in higher terms of the series, 
surface values of g and its first derivative (but no higher 
derivatives) can be expressed in terms of values at s=b. 
The surface of the body is determined by the vanishing of 
the stream function. Thus the ratio of shock-wave curva- 
ture to body curvat& is found to be given by 

l--f’@) 
?e (b) 

Proceeding as in the plane case, it is found that the initial 
pressure gradient is expressed in terms of the initial slope 
Ro’=br and curvature Ro”=cr of the body by 

6361 

Numerical values of g(b) and g’(b) are listed in the follow- 
ing table, together with the resulting values for the curvature 

11 In a private communication; see also Addendum No. 1 to ref. 25. 

ratio 1 and surface pressure gradient: 

PRO’ g(6) 9’ (6) 1 
-~ 

0. 3765 5. 170 -8. 502 0. 0426 

1: Eli9 I. 1. 573 800 -3.640 -4. 073 . 2346 5106 
2.469 2. 101 -6. 820 . 8039 
3.988 .2.487 -8.638 . 8921 

02 2. 931 -10. 76 . 9586 

- 

-- 

- 

:  .  

13 

5. 532 
4. 662 
4. 514 
4. 684 
4. 802 
4. 929 

The curvature ratio is plotted in figure 12, and the initial 
pressure gradient in figure 13. The curvature ratios calcu- 
lated from the full equations by Shen and Lin arQ also shown 
in figure 12 for comparison, because the error introduced by 
incorrect treatment of the solution near the body is probably 
small. 

/ , 
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rbance theory 

FIGIJRI~ l2.-Init.ial ratio of shock to body curvat,ure for ogivc of 
revolution. 

HIGHER TERMS IN SERIES FOR OGIVE OF REVOLUTION 

It might be supposed that for an ogive of revolution de- 
scribed by a power series, the perturbation scheme could be 
continued indefinitely to find successively higher terms in 
a ‘power series expansion for surface pressure. However, 
because of the nonanalytic nature of the stream function 
near the body, complications arise if one proceeds simply 
by adding further terms to equation (56). 

It has been seen that g(0) involves an authentic 3/Z-power 
branch point near the surface. However, it can be shown 
that the next term will involve a spurious l/Z-power branch 
point there, the next an inverse l/Z-power singularit.y, and 
so on. As a consequence of this spurious reinforcement of 
the actual nonanalyticity, it is impossible to evaluate surface 
pressures. Hence, straightforward continuation of the per- 
turbation procedure breaks down. 

The difficulty arises from the fact that in the first perturba- 
tion, the 3/2-power branch point in g arises at the basic cone 
(0= b) rather than at its actual location on the ogive surface. 
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=.. 

FICXTRE 13.-Initial pressure gradient on ogive of revolution. 

Although this discrepancy has no effect upon the first per- 
turbation, it is compounded in subsequent terms so as to 
be catastrophic. The remedy is to choose a slightly strained 
coordinate system such that for each term the 3/2-power 
branch point appears precisely at the body surface. Both 
the difJ?iculty and the remedy are just those considered by 
Lighthill in his discussion of a technique for rendering ap- 
proximate solutions uniformly valid (refs. 27 and 28). As 
in the previous examples, the solution proceeds, in effect, by 
assuming a given shock wave and determining the corre- 
sponding body shape. Therefore, the required straining of 
coordinates is not known at the outset, but must be deter- 
mined to successively higher accuracy as the solution 
progresses; this is characteristic of Lighthill’s technique. 

With this modScation, the perturbation procedure can, 
in principle, be continued indefinitely. It can therefore be 
concluded that an analytic body of revolution is accompanied 
by an analytic attached bow shock wave at supersonic speeds, 
and an analytic pressure distribution. 

Uniformly valid equations of motion.-Let’ the body be 
given in physical coordinates by 

bzf; ,,‘+; dx3+ . . . > (67) 

and the corresponding shock wave by 

rs=r 
[ 

z+-$ Zcz2+~ (U2d+nc2) ti+ . . .] 033) 

Now introduce a slightly strained radial coordinate ; such 
that the body surface is given by r”=bz. The simplest 
choice is 

m  - 1 r= r-- cZ2-i cE3+ . . . 2 (69) 

The procedure which led to equation (57) gives for the 
entropy function behind the shock wave 

W(#L)=%{ l+olzC~+[o;(md+ne’+~~‘c2]~+ . . .} (70a) 

where w,, and w1 are given by equation (40b), and 

w2=(K&- 1,4:+;;’ 1) K;] ml 

The stream function has the form 

where i is the nee.rly conical coordina.te F/X. The differential 
equations which result from substituting this series into the 
equation of motion are simplified by setting 

.m =m+ (3 

m=mm-;.m 

9 ;(i)=z”j(;)+nh(s)+; zd(i)-;f”(a 

(72) 

(The functions g, h, and j thus introduced a,re those which 
would appear in place of 2, i, and 3 if no straining of the 
coordinate system had been undertaken.) Then the differ- 
ent,ial equa,tions (a.nd boundary conditions) for j and g, as 
functions of the stra.ined variable z, arc (as implied by the 
common notation) found to be just those solved in the 
previous sections, where f. a.nd g were functions of the 
unstrained variable 0. The differential equations for the 
new functions h and j are 

Dh”=E+Fh+Gh’ 

Djrf=I-f-Fj+Gj” 

where D is given by equation (58b), and 

E=w,w,$~ [~@-~~)+frz] 

F=4@‘+4.ff”) 

(734 

(734 

Boundary conditions.-Again, expressing conditions just 
behind the shock wave in terms of those st z=l by Ta.ylor 
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series expansion and simplifying with the aid of the differ- 
ential equations gives 

h(l)=+ L?(l) 
1 

L- 
?f’(U 

h’(l)=3 dw2+(~-l)Ko2 1 -. /- 1 (74a) 

where *f’(l) is given by equation (51b). g(1) and g’(1) by 
equation (59), and 

(r- 1)Ko2 

.f”(l)=,+,- 1JKo2 

.f”‘(l)=- 2K02[2”/K,+ CT--- lj] [2+ (3r+ 1)Ko2] 

(^/+1)(Ko2-1) [2-w1’-l)K~~]~ 
1 (74b) 

[4(?‘-1) (2Y+3)+4(2r3+3r2+5) Ko2- 

3(?‘-l)r2+(6~+1) ~0~+2(Y---l) (5r+3) Kg’]X 

{ (Ko’--1) [~+(‘~--)KcJ~]~} -I J 

Behavior near body surface.-The fact that f(z) is 
analytic at g=b implies that the full solution for h is also 
analytic, and that the solution of the homogeneous equation 
for j is analytic. The coefficient I is proportions1 to 
(i-b>-“‘“, so that a particular integral for j is proport.ional 
to (i-b)? For purposes of computation it is important to 
separate the regular part of I from the singular part, because 
either may predominate for the closest practical approach 
to the singularity, depending upon the value of t,he similarity 
parameter. Furthermore, the accuracy of joining the step- 
by-step solution for j to the series is increased by treating 
not, j itself but the combination jfg’J21. Hence, the series 
employed is 

j+$-@“l J- f? (~--)3/2[1+~-~(5+3^1~)Ye1/2-. . .j+ 

4  [ l+a+(/-$) ve2f.  . .]+ 

j(b) [ l+zxp+y Xe3f. . .]+ 

j’(b)(&b) [l+; e-7 Ae2$T x2+. . . 1 VW 
where j8=j(b), etc., h and e are defined by equation (64b), 
and 

E.c= b (-a’) 
gb 

2&i wz (bji,‘)3’2 
‘=F gb 

(75b) 

Numerical integration--The differential equations for 
h and j have been integrated numerically in the manner 

outlined previously, with 7=1.405. Because h represents 
actually (like g) only a first perturbation of the basic conical 
flow I2 and is furthermore regular near the body, it is readily 
determined with ample accuracy. On the other hand, in 
the’equation for j, the coefhcient J is so strongly sing&r 
that it was found necessary to replace simple step-by-step 
integration by the more laborious five-term procedure of 

.Milne (ref. 29, p. 142). . . The coeEicients. and boundary 
values are a.lso considerably more difhcult to calculate, so 
the integration of j has been limited to three values of the 
similarity parameter, whereas h has been found for four 
values. 

The accuracy of the solution for j suffers from the facts 
that it depends upon the accuracy of the preceding solution 
for g, that one coefficient in the differential equabion is 
strongly singular, and that the results of physica. interest 
are found as differences of nearly equal quantities. Con- 
sequently, although results derived from the functions f, 
g, and h are probably reliable to three or four significant 
figures, those derived from j are perhaps not reliable to more 
than two. 

Body shape and ‘pressure distribution.-The parameters 
m and n, which relate the shape of the shock wave to that of 
the body, are found, ‘by requiring the stream function to 
vanish at the surface, to be given by 

(76) 

The surface pressure coefficient is given by 

(77) 

Thus it is found that on the surface of a body described in 
actual coordinates by 

~=R~‘rf; Ro”x2+; R,,“‘rt?+. . . 

the pressure coefficient is given by 

(7% 

c,,=n,q&)+Ro’Ro” [ a(~~o’,,J z+ 

where 
c a=2 U O  jb’ ’ 

r 0 
1 

RO12 FB -Y CMR,‘)” 1 

‘b) 
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Numerical values of h(b), h’(b), j(b), and j’(b) are listed in 
the following table, together with the resulting values of the 
parameters m  and r~, which relate the shape of the shock wave 
to that of the body, and the two functions which give the 
initial curvature of the surface pressure distribution. The 
two pressure-curvature functions are plotted in figures 14 
and 15. (Curves ha.ve been faired through the three calcu- 
lated points by analogy with the results of the cone-expan- 
sion approximation discussed in the following section.)13 

0.3765 14.34 -36.40 . . . .._. .6599 1.752 -3.401 ..ia:i.. 

1.150 9341 4: m; 4: ;3 5.30 
m  1: lfi6 7.63 -27.4 

a2cp 
d(Rd’x)e 

m  IL 

0.0051 .._ . . . 
.0803 0.583 
.2867 .8ffi 
.a031 -. 901 

5.694 
4.04 4.736 
5. 20 4.561 

13. i 5.332 

rbance theory---.-- 

I 
Pf% 

FIGURE 14.-First term in initial pressure curvature on ogive of 
revolution. 

FURTHER APPROXIMATIONS 

The theory discussed heretofore is the simplest which 
retains all the essential features of hypersonic flow, so that 
its solutions approach exactness as t,he thickness tends 
toward zero. Further approximations, although desirable 
for facilitating solution, will int,roduce errors whose nature 
may be more obscure. In the case of plane flow, however, 
further approximations exist which are so simple and accurate 
-that the problem may be considered solved for practical pur- 
poses (cases (5) and (6) below). These and other approxima- 
tions will now be considered for three-dimensional shapes, in 
comparison with the solutions already given. 

Most of these approximations are useful oumide the limits 
of hypersonic small-disturbance theory. However, we shall 

13 This three-term series approximation was used to calculate the pressures over circular 
arc ogives for a similarity parameter of 1. The results were compared (ret. 30) with the 
method of characteristics solutions (ref. 31) and shown to be in good agreement over most of 
the ogive. (Note that in Figure 7 of reference 30 the ordinate should he lsbelled Cp/Ro’2 
rather than C,.) 

FIGURE 15.-Second term in initial pressure curvature on ogive of 
revolution. 

consider them here only as they are reduced to small-disturb- 
ance form, so that t.hey actually represent approximations 
beyond t’hose already made. For exa,mple, the well-known 
shock-expansion method will be considered only in its hJTper- 
sonic sma.ll-disturbance form (ref. 17). 

The following additional approximations will be considered: 
(1) Linearized theory, second-order theory, etc. 
(2) Newtonian impact theory 
(3) Newtonian theory plus centrifugal forces 
(4) Y=l 
(5) Cone-expansion approximation 
(6) Tangent-cone approximation 
(7) Compression-layer approximation 
Linearized theory, etc.-The brea,kdown of linearized 

theory serves olmost as a definition of hypersonic flow. 
Hence, the most that can be expected of linesrized theory, 
second-order theory-, etc., is that they penetrate somewhat 
into the lower end of the hypersonic range. 

For plane flow Donor (ref. 32, pp. 90-91) has determined 
the fourth-order solution. Reduced t.o hypersonic small- 
disturbance form, his result for surface pressure coefficient 
on a single airfoil may be written as 

3-7Y;~2+3~3 K,,K+(Y~‘~;;-~) Ko3&‘x+ . . . 

(80) 

where K is the local similarit.y parameter (Al times local sur- 
face slope), K. its value at the leading edge, and Ko’ its 
initial rate of change. Even in this reduced form nothing is 
known of the ra.nge of convergence of the series or, indeed, 
whether it converges at all. However, for a single wedge the 
solution is known in closed form from equation (34). Hence, 
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it is seen that in this special case the series is convergent for In both cases it is to be understood that nega.tive vulues are 
K=M6<4/(yfl), which is 1.67 for air. to be replaced by zero. Figure 17 shows that the improve- 

For. cones the linearized and second-order solutions (ref. ment clue to including centrifugal effects is appreciable for 
33, p. ll), as reduced to hyptirsopic. small-disturbance form, the init,ial pressure gradient on an ogive of revolution. 

_/. 

are ihowl in figure 16. 
4 
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FIGURE 16.-Further approximations to hypersonic small-disturbance 
theory; prqssure on cone, y= I .405. 

Newtonian impact theory.-Assuming that fluid particles 
lose their normal momentum on impact with the surface 
lea.ds to a prediction of pressures proportional to the square 
of the sine of the angle of inclination or, in the smoll-disturb- 
ante approximation 

c SE2 
R’2 (81) 

wherever the slope is positive, and zero elsewhere. Accord- 
ing to equation (34) the actual value for a wedge falls only to 
2.4 at infinite Mach number (with y=7/5), so that the ap- 
proximation is poor for plane flow. It is more satisfactory 
for fusiform shapes such as a cone (figure IS), for which the 
actual value at M= 0~ (with 7=7/s) is 2.09. 

Newtonian plus centrifugal forces.-Newtonian impact 
theory has been improved by including the centrifugal pres- 
sure gradient through the layer of fluid streaming over the 
body (refs. 34 and 35). The result is precisely the limit of 
the full theory as A&‘-+ 0~ and y-1. In the small-disturbance 
approximation (ref. 33), it gives for plane flow 

C,,=2(R’2+RR”). (82) 
and for axially symmetric flow 

C,,=2R’2+RR” (83) 
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FIGVRE 17.-Further approximations to hypersonic small-disturbance 
theory; initial pressure gradient on ogive of revolution, y= 1.405. 

y=l.-It has just been seen that on fusiform shapes near 
M=m, the surface pressure is insensitive to the value of y. 
At the other end of the hypersonic range, linearized theory 
is independent of y. These two extremes suggest that a close 
approximation throughout the hypersonic range may be 
found by setting y= 1 (and this is particularly true since in 
a real gas y approaches 1 at high temperatures). This choice 
simplifies the theory by rendering it effectively isentropic; 
that is, ‘although shock waves produce entropy jumps, 
entropy does not appear in the pressure-density relation and 
is therefore absent from the problem. 

This approximation has been tested by computing tli’e 
hypersonic small-disturbance solution for a cone with y= 1. 
The results corresponding to those tabulated on page 11 are 
shown in the following table (including the known value 
at M= m). 

1. 04 0.3912 0.4069 1. 255 1. 15 .5609 
1: 

%” 1. 546 ; !27! 
1. 50 

1’ 
7647 2.498 

co CD m 
$277 
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Figure 16 shows close agreement with the results for r=1.405, 
the discrepancy being, indeed, less than that due to the 

0 thickness of a 10’ semivertex angle (cf. figure 11). 
“Cone-expansion” approximation--The shock-expan- 

sion method for plane flow, which neglects disturbances 
reflected from the bow wave, has recently been shown to 
yield good accuracy at all supersonic speeds away from the 
transonic zone (ref. 36). 

A more surprising discovery is tha.t an ana.logous procedure 
yields a reasonable approximation for certain three-dimen- 
sional shapes in hypersonic flow. In this “cone-expansion” 5 
method the flow behind the tip of a pointed body is approxi- 
mated by a Prandtl-Meyer expansion (refs. 37 and 38). 
The accuracy of this approximation is indicated by the 
comparison shown in figure 17 for the initial pressure gradient 
on an ogive of revolution. 

Tangent-cone approximation.-Newtonian impact theory 
predicts pressures depending only upon the local slope. 
This suggests approximating the pressure at each point of 
a body by that on a locally tangent cone or wedge at the 
same Mach number. For plane flow this gives equation 
(35), which yields good accuracy. For bodies of revolution, 
figure 17 gives an indication of the accuracy obtainable. 

Compression-layer approximation.-In the upper end of 
the hypersonic range the bow shock lies close to the body 
(if the body slope is positive). This suggests making an 

approximation somewhat analogous to that of the Prand tl 
boundary-layer theory, assuming that the layer of com- 
pressed fluid between the body and shock is very thin. 

For example, assume that the shock wave lies so close 
to a circular cone that a linear variation is adequate to 
describe the stream function. Then according to equation 
(51) the stream function is given by 

Requiring this to vanish at the surface gives as the ratio 
of cone angle to shock-wave angle 

(35) 

This result has been derived by Lees (ref. 39). At infinite 
Mach number with r=1.405 it gives 0.916 compared with 
the true value of 0.914, and Lees shows that it is accurate 
even in the lower end of the hypersonic range. However, 
for the corresponding surface pressure coefficient, the range 
of good approximation is much smaller, as shown in 
figure 16. 

AMES AERONAUTICAL LABORATORY 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

MOFFETT FIELD, CALIF., Mm-. 18, 1954 



APPENDIX A 

PRINCIPAL SYMBOLS 

1Wm A,*B;C, D, ME, ] .coefficients of dtieI;ential equations (See 
F, G, H, I 
m4 Y, 4 
wd 

b, c, d 

f, 9, h, j 

1 

m, n 

M 
P 
R(x) 

r 

S(x, Y, 4 

s(x) 

t 
u, v, w 

x, Y, 2 

P 

/ eqs. (58) and (73).) - 
function defining body shape 
reduced radius (or ordinate) of axially 
symmetric (or plane) body 
coefficients in series expansion for radius 
(or ordinate) of body (See eqs. (36) and 
(67) -) 

(P-P > pressure coefficient, 1 
ij Pcown2 

functions in series expansion for stream 
function (See eqs. (39) and (72).) 
initial ratio of shock-wave curvature to 
body curvature 
coefficients relating shapes 
of shock wave and body (See eq. (es).) 
free-stream Mach number 
pressure 
radius (or ordinate) of axially symmetric 
(or plane) ogive 
radius (or ordinate) in cylindrical (or plane 
Cartesian) coordinates 
function defining shape of system of shock 
waves 
radius (or ordinate) of shock wave attached 
to axially symmetric (or plane) body 
time 
velocity components in Cartesian or cylin- 
drical coordinates 
Cartesian coordinates with x in streamwise 
direction 
&P- 1 

APPENDIX B . 
:, 

CONNECTION BETWEEN HYPERSONIC AND LINEARIZED 
SUPERSONIC SIMILITUDE 

The similitude for linearized supersonic flow is now well 
understood, having been first correctly stated by Gothert in 
reference 15 (for the analogous case of linearized subsonic 
flow). This similarity rule implies that the reduced coordi- 
nates x, 5, a,nd i of equation (Sa) may again be introduced, 
and that then the reduced flew quantities, 

depend only on the reduced coordinates and the supersonic 
similarity parameter fir.’ The error in the theory and asso- 
ciated similarity rule is 0(7/p , in general. 

h 
It may be em- 

phasized that here, as in all t e simila.rity rules, the choice 
of reduced variables is by no means unique; an unlimited 
number of equivalent forms can be produced for example, by 
multiplying each reduced variable by, or adding to it, any 
constant multiple of powers of the similarity parameter. 
The particular forms adopted bere were chosen to correspond 

adiabatic exponent 
semivertex angle of wedge or cone 
(O-b) 

b 

conical variable, g 

auxiliary hypersonic similarity parameter, 
based upon local slope of shock wave, 
Mm’(x) 
[-.&2$-j;’ 

N--d) 

Z&2 (bfb’)“‘” -L 
3 gb 

density 
constant which is zero for plane flow, unity 
for axially symmetric flow 
thickness parameter of body; in examples, 
initial slope of shock wave 
stream function for plane or axially sym- 
metric flow (See eq. (23).) 
entropy function (See eq. (25).) 
terms in series expansion for w (See eqs. 
(40) and (70).) 
denote jump in quantity through shock 
wave 
reduced form (See eqs. (8).) 
form associated with strained coordinates. 
(See eqs. (69) and (71).) 
derivative with respect to argument 
value at tip of pointed body 
value at surface of body (or at 8, F=b) 
value at shock wave 
value in free stream 

I VW 

@ lb) 

’ Here. in contra& with the hypcrsonlc case, the reduced variables C and F me dctlnitely 
not O(1) as T-M (for fIxed M). 

19 
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as closely as possible to their hypersonic counterparts in 
equation (8b), so as to facilitate the following argument. 

For Mach numbers so lsrge that Ad is effectively equal to /?, 
these results agree with those for the hypersonic case,2 and 
this was pointed out by Tsien (ref. 5). However, it, is more 
fruitful to reverse the a.rgument, snd observe.that the hyper- 
sonic similitude, just as it stands, is entirely consistent with 
the linearized similitude. This is immediately apparent for 
the reduced velocities u, T, and 2 which (as implied by the 
common notation) have identical forms in the two cases. 
They differ only in depending upon different parameters, 
but in hypersonic flow A4 and /3 are interchangeable to within 
the accuracy O(P) of the theory, so that 44~ can be replaced 
by @T to complete the correspondence. For the pressure 
and densit,y, the hypersonic theory (eq. (8b)) shows that 

1 

( > 

1 P-1 =$-- 
rM2r2 p, YM2TZ 

LE 
( > 

P-1 =g2 (P-1) 
M2 pm 

Again utilizing the fact that M and p are interchangeable in 
the hypersonic range, these can be rewritten 

1 

( > 
P-1 +)-i&=~ 

rM2r2 p, 

p2 
( > 

P-1 =p-1 
M2 pm 

=; 
(B2b) 

where the final forms depend upon the parameter PT and are 
therefore (as implied by the notation) identical with their 
linearized counterparts in equation @lb). Thus the cor- 
respondence is completk 

This means that the hypersonic small-disturbance theory, 
when properly interpreted according to the linearized super- 
sonic similitude, yields a first-order solution at all speeds 
above the transonic zone. The reduced problem of equa- 
tions (10) to (13) is solved for a given value of the parameter 
MT; and then with MT replaced by /3r is interpreted in terms 
of physical v+iables according to 

u=u, [1+7% C,F,T; /3T)] 

v=u;rT 

w=u, ri-6 

p=p, [l+7M2r2 (B-&)]=P, (+Jd2r2$-+) 

P=PuJ [I+? w-J=P, ($g +J 

REFERENCES 

033) 

1. Lin, C. C., Reissner, E., and Tsien, H. S.: On Two-dimensional 
Non-steady Motion of a Slender Body in a Compressible Fluid. 
Jour. Math. and Phys., vol. 2i, no. 3, Oct. 1948, pp. 220-231. 

2. Lees, L., and Probstein, R. F.: Hypersonic Viscous Flow Over a 
Flat Plate. Princeton Univ., Aero. Eng. Lab. Rep. 195, 1952. 

3. Lees, Lester: On the Boundary-Layer Equations in Hypersonic 
Flow and Their A.pproximate Solutions. Jour. Aero. Sci., 
vol. 20, no. 2, Feb. 1953, pp. 143-145. 

4. Oswatitsch, Klaus: ~hnlichkeilsgcsetxe fiir IIyper~cl~allstr~mung. 
ZAMP, vol. 2, no. 4, July 1951, pp. 24!J-2til. 

5. Tsieu, H. S.: Similarity Laws of Hypersonic Flows. Jour. Math. 
and Phys., vol. 25, no. 3, Oct. 1946, pp. 247-251. 

6. Hayes, Wallace D.: On Hypersonic Similitude. Quart. 4ppl. 
Math., vol. 5, no. 1, Apr. 194i, pp. 105-106. 

7. Hamaker, Frank M., and Woug, Thomas J.: The Similarity Law 
for Konsteady Hypersonic Flows and Requirements for the 
Dynamical Similarity of Related Bodies in Free Flight. XACA 
TN 2631, 1952. 

8. Goldsworthy, F. A.: Tmo-dimensional Rotational Flow at High 
Mach Number Past Thin Aerofoils.. Quart. Jour. Mech. aud 
Appl. Math., vol. 5, pt. 1, Mar. 1952, pp, 54-63. 

9. Courant, R., and Friedrichs, I<. 0.: Supersonic Flow and Shock 
Waves. Interscience Publishers, Inc., 1948. 

10. Jones, R. T.: Properties of Low-Aspect-Ratio Pointed Wings at. 
Speeds below aud above the Speed of Sound. S.4C.4 Rep. 
845, 1946. 

11, Ward, G. iY. : Supersonic Flow Past Slender Pointed Bodies. C&art. 
Jour. Mech. and Appl. Math., vol. 2, pt. 1, AIar. 194!J, pp. 
i5-97. 

12. Lighthill, M. J.: Oscillating Airfoils at _ High Mach Xumber. 
Jour. Aero. Sci., vol. 20, no. 6, June 1953, pp. 402-106. 

13. Spreiter, John R.: 011 the Application of Transonic Similarit 
Rules. N.4CA TN 2726, 1952. 

14. Van Dyke, Milton D.: The Comhiued Supersollic-Hypersonic 
Similarity Itllle. Jour. Aero. Sci., vol. 18, no. 7, July 1951, pp. 
499-500. 

15. Giithert, B. : Ebene und raiimliche St riimung bei hohen Unterschall- 
geschwindigkeiten (Erweiterung der Prandtlschen Regel) 
Lilienthal Gesellschaft 127. (.4vailable in English trans. as 
NACA TN 1105.) 

16. Staff of the Ames Aeronautical Laboratory: Equations, Tables, 
and Charts for Compressible Flow. NACA Rep. 1135, 1953. 
(Supersedes NACA TN 1428) 

17. Linnell, Richard D.: Two-dimensional Airfoils in Hypersonic 
Flows. Jour. Aero. Sci., vol. 16, no. 1, Jan. 1949, pp. 22-30. 

18. Ivey, H. Reese, and Cline, Charles W.: Effect of Heat-Capacity 
Lag on the Flow Through Oblique Shock Waves. NACA TN 
2196, 1950. 

19. Crocco, Luigi: Singolarita della Corrente Gassosa Iperacustica 
nell’Intorno di una Prora a Die&o. L’.$erotecnica, vol. 17, 

no. 6, June 1937, pp. 519-534. 
26. Sch&fer, AI.: The Relation Between Wall Curvature and Shock 

Front Curvature in Two-Dimensional Gas Flow. AF, Air 
h’lateriel Command, Wright-Patterson .4ir Force Base, Intelli- 
gence Dept., Tech. Rep. F-TS-1202-IA, 1949, Brown Univ., 
(Providence, R. I.) Graduate Div. of Applied blathematics. 
(Trans. ) AS-T-g. From: Peenemiinde (Heeresversuchsanstalt) 
Archiv 44/S. Terhnische Hochschule Dresden, LehrstuhI fiir 
Technische Mechanik, Oct. 20, 1942. 

21. Kraus, Samuel: An Analysis of Supersonic Flow in t,he Region of 
the L&ding Edge of Curved Airfoils, Including Charts for 
Determining Surface-Pressure Gradient and Shock-\Vare Curva- 
ture. NACA TN 2729, 1952. 

22. Mass. Inst. of Tech., Dept. of Elect. Eugr., Center of Analysis. 
Tables of Supersonic Fiow Around Cones, by the Staff of the 
Computing Section, Center of hnalysis, under the direction of 
Zdenek Kopal. Tech. Rep. No. 1, Cambridge, 1947. 

23. Shen, S. F.: Hypersonic Flow Over a Slender Cone. Jour. Math. 
and Phys., vol. 27, no.. 1, Apr. 1948, pp. 56-66. 

24. Cabanncs, Henri: fitude de 1’Onde de Choc AttachEe dans les 
I?couIements de Revolution. Premiere Partie: Cas d’un Ob- 
stacle Terming par une Ogivc. La Reaherche At%-onautiqne, 
no. 24, 1951, pp. 17-23. 

25. Shkn, S. F., and Lin, C. C.: On the Attached Curved Shock in 
Front of a Sharp-nosed Axially Symmetrical Body Placed in a 
Uniform Stream. NACA TX 2505, 1951. 

26. Ince, E. L.: Ordinary Differential Equat,ions. First .4merican ed. 
Dover Publications. 



, : A STUDY OF HYPEBSONIC SMALL-DISTURBANCE THEORY 21 

. .-z- i- 

27. Lighthill, M. J.: A Technique for Rendering Approximate Solu 
tions to Physical Problems Uniformly Valid. Philos. Mag., 
Ser. 7, vol. 40, Dec. 1949, pp. 1179-1201. 

28. Lighthill, M. 5.: Higher-Order Approximations. Section E of 
vol. V, General Theory of High-Speed Aerodynamics, High- 
Speed Aerodynamics and Jet Propulsion. Princeton Univ. 
Press, 1954. 

29. Mime, Will iam Edmund: Numerical Calculus. Princeton Univ. 
Press, $949. 

30.~Xan-Dyke,. Milton --D..: Applications of Hypersonic Thin Body 
Theorv. Jour. Aero. Sci.. vol. 21. no. 3. Mar. 1954. DD. 179-186. 

31. Rossow,” Vernon J.: Applicability ‘of the , Hypersonic- Similarity 
Rule to Pressure Distributions Which Include the Effects of 
Rotation for Bodies of Revolution at Zero Angle of Attack. 
NACA TN 2399, 1951. 

32. Kochin, N. E., Kiebel, I. A., and Rose, N. V.: Teoreticheskaya 
Gidromekhanika. Third ed., Leningrad-Moscow Ogiz, 1948. 

33. Van Dyke, Milton D.: Practical Calculation of Second-Order 
Supersonic Flow Past Nonlifting Bodies of Revolution. NACA 
TN 2744, 1952. 

34. Busemann, A.: Fliissigkeits- und Gasbewegung. HandwGrterbuoh 
der Naturwissenschaften, Zweite Auflage (Gustav Fischer, Jena) , 
1933, pp. 275-277. 

35. Ivey, H. Reese, Klunker, E. Bernard, and Bowen, Edward N.:: 
A Method for Determining the Aerodynamic Characteristics of 
Two- and. Three-Dimensional Shapes at Hypersonic Speeds. 
NACA TN 1613, 1948. 

36. Eggers, A. J., Jr., and Syvertson, Clarence A.: Inviscid Flow About 
Airfoils at High Supersonic Speeds. NACA TN 2646, 1952. 

37. Eggers, A. J., Jr., and Savin, Raymond C.: Approximate Methods 
for Calculating the Flow About Nonlifting Bodies of Revolu- 
tion at High Supersonic Airspeeds. NACA TN 2579, 1951. 

38. Eggers, A. J., Jr.; On the Calculation of Flow About Objects 
Traveling at High Supersonic Speeds. NACA TN 2811, 1952. 

39. Lees, Lester: Note on the Hypersonic Similarity Law for an 

I 

Unyawed Cone. ‘Jour. Aero. Sci., vol. 18, no. 10, Oct. 1951, 
pp. 700-702. 


